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Abstract

We consider sparse array beamfomer design achieving maximum signal-to interference plus noise ratio (MaxSINR). Both
array configuration and weights are attuned to the changing sensing environment. This is accomplished by simultaneously
switching among antenna positions and adjusting the corresponding weights. The sparse array optimization design
requires estimating the data autocorrelations at all spatial lags across the array aperture. Towards this end, we adopt
low rank matrix completion under the semidefinite Toeplitz constraint for interpolating those autocorrelation values
corresponding to the missing lags. We compare the performance of matrix completion approach with that of the
fully augmentable sparse array design acting on the same objective function. The optimization tool employed is the
regularized l1-norm successive convex approximation (SCA). Design examples with simulated data are presented using
different operating scenarios, along with performance comparisons among various configurations.

Keywords: Sparse arrays, MaxSINR, SCA, Fully augmentable hybrid arrays, Matrix completion.

1. Introduction

Sensor selection schemes strive to optimize various per-
formance metrics while curtailing valuable hardware and
computational resources. Sparse sensor placement, with
various design objectives, has successfully been employed
in diverse application areas, particularly for enhanced pa-
rameter estimation and receiver performance [1, 2, 3, 4, 5,
6, 7, 8]. The sparse array design criteria are generally cat-
egorized into environment-independent and environment-
dependent performance metrics. The former are largely
benign to the underlying environment and, in principle,
seek to maximize the spatial degrees of freedom by ex-
tending the co-array aperture. This enables high reso-
lution direction of arrival (DOA) estimation possibly in-
volving more sources than the available physical sensors
[9, 10, 11, 12, 13]. Environment-dependent objectives, on
the other hand, consider the operating conditions charac-
terized by emitters and targets in the array field of view,
in addition to receiver noise. In this regard, applying such
objectives renders the array configuration as well as the
array weights time-varying in response to dynamic and
changing environment.

In this paper, we focus on optimum sparse array design
for receive beamforming that maximizes the output signal-
to-interference and noise ratio (MaxSINR) [14, 15, 16]. It
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has been shown that optimum sparse array beamforming
involves both array configuration and weights, and can
yield significant dividends in terms of SINR performance in
presence of desired and interfering sources [17, 18, 19, 20,
21, 22, 23]. However, one key challenge in implementing
the data-dependent approaches, like Capon beamforming,
is the need to have the exact or estimated values of the
data autocorrelation function across the full sparse array
aperture [14, 24]. This underlying predicament arises as
the sparse array design can only have few active sensors at
a time, in essence making it difficult to furnish the correla-
tion values corresponding to the inactive sensor locations.

To address the aforementioned problem, we propose in
this paper a matrix completion strategy assuming a sin-
gle desired source and multiple interfering sources. This
strategy permits the interpolation of the missing data cor-
relation lags, thus enabling optimum thinning of the array
for MaxSINR. The low rank matrix completion has been
utilized successfully in many applications, including the
high-resolution direction of arrival estimation. We com-
pare the matrix completion strategy to the hybrid sparse
array design that has been recently introduced and which
also provides full spatial autocorrelation function for array
thinning [25]. The fundamental thrust of the hybrid de-
sign is to pre-allocate some of the available sensors in such
a way so as to ensure that all possible correlation lags
can be estimated. In this case, the difference between the
available sensors and those pre-allocated can be utilized
for maximum SINR. In essence, the hybrid design locks
few spatial degrees of freedom in an attempt to making
the full autocorrelation matrix available to carry out the
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Figure 1: Block diagram implementing adaptive beamforming and
antenna switching

array optimization at all times. In that sense, it is a hybrid
between structured and non-structured arrays. With pre-
allocated sensors, the design approach offers a simplified
antenna switching as the environment changes. In con-
trast, the matrix completion-based design is not tied in to
any pre-allocated sensor position and, therefore, has the
ability to optimize over all the available sensor locations.
However, low rank matrix completion is a pre-processing
step that is required every time we decide on sensor selec-
tion as the environment changes. This significantly adds
to the overall overhead and computational complexity. We
examine both approaches using estimated autocorrelation
function, in lieu of its exact values, and compare their re-
spective performances under different settings and degrees
of freedom.

It is worth noting that MaxSINR sparse array design
using either is an entwined optimization problem that jointly
optimizes the beamforming weights and determines the ac-
tive sensor locations. The optimization is posed as find-
ing P sensor positions out of N possible equally spaced
grid points for the highest SINR performance. It is known
that maximizing the SINR is equivalent to the problem of
maximizing the principal eigenvalue of the product of the
inverse of data correlation matrix and the desired source
correlation matrix [24]. However, the maximum eigenvalue
problem over all possible sparse topologies is a combina-
torial problem and is challenging to solve in polynomial
times. To alleviate the computational complexity of ex-
haustive combinatorial search, we pose this problem as
successive convex approximation (SCA) with reweighted
l1-norm regularization to promote sparsity in the final so-
lution.

To proceed with the SCA optimization, it is essential
to input the algorithm with the full data correlation ma-
trix. For the hybrid design, all the correlation lags are
available and, therefore, we resort to averaging across the
available correlation lags to harness a Toepltiz matrix esti-
mate of the received data. On the other hand, a sparse ar-
ray designed freely without preallocating sensor locations

necessitates the use of low rank matrix completion to in-
terpolate the missing lags and subsequently applying the
SCA optimization [26]. The word “free” implies no pre-
set position of any of the sensors involved. It is shown
that the matrix completion is an effective approach to ac-
complish the MaxSINR sparse design. The performance
of matrix completion can potentially surpass the hybrid
design at the expense of more involved sensor switching
and additional computational complexity stemming from
the Toeplitz interpolation of the missing correlation lags.

The rest of the paper is organized as follows: In the
next section, we state the problem formulation for maxi-
mizing the output SINR. Section 3 details the SCA for ar-
rays designed freely alongside the hybrid design approach
and the associated modified SCA optimization. Section
4 explains the matrix completion approach. In section
5, with the aid of Monte Carlo simulations, we compare
the performance of hybrid-designed arrays viz a viz freely-
designed arrays in a limited snapshot environment. Con-
cluding remarks follow at the end.

2. Problem Formulation

We consider an emitter source in the presence of nar-
rowband interfering signals. The signals impinge on a uni-
form grid of N linear elements with the inter-element spac-
ing of d and the received signal is given by;

x(n) = bs(n)s(θ) +

I∑
k=1

bik(n)i(θk) + v(n), (1)

The sampling instance is n, I are the number of interfering
sources and (bs(n), bik(n)) ∈ C are the baseband signals
for the source and interferences, respectively. The steering
vector corresponding to the direction of arrival of desired
source s(θ) ∈ CN is given by,

s(θ) = [1 ej(2π/λ)dcos(θ) . . . ej(2π/λ)d(N−1)cos(θ)]T . (2)

The interference steering vectors i(θk) are similarly de-
fined. The additive noise v(n) ∈ CN is Gaussian with
variance σ2

v . The beamformer processes the received sig-
nal x(n) linearly to improve SINR. The beamformer out-
put y(n) is given by,

y(n) = wH
o x(n), (3)

The optimal beamforming weights wo that maximizes SINR
is given by solving the following optimization problem [24];

minimize
w∈CN

wHRiw,

s.t. wHRsw = 1.
(4)

The desired source correlation is Rs = σ2s(θ)sH(θ), with
source power σ2 = E{bs(n)bHs (n)}. The sum of the inter-
ference and uncorrelated noise correlation matrix is Ri =
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∑I
k=1(σ2

ki(θk)iH(θk)) + σ2
vIN×N , with the kth interference

power σ2
k = E{bik(n)bHik(n)}. Since Rx = Rs + Ri, then

formulation (4) can be written as as part of the objective
function as follows [24],

minimize
w∈CN

wHRxw,

s.t. wHRsw ≥ 1.
(5)

where the equality constraint is relaxed due to the inclu-
sion of the relationship between the data and signal au-
tocorrelation matrices in the cost function. The optimum
solution of the above problem only requires the knowledge
of the received data correlation matrix Rx = E(xxH) and
the DOA of the desired source. The former can readily
be estimated from the received data vector x over T snap-
shots, R̂x = 1

T

∑T
n=1 x(n)xH(n).

The analytical solution of the optimization problem
is given by wo = {R−1i s(θ)} with the optimum output
SINRo;

SINRo =
wH
o Rswo

wH
o Riwo

= Λmax{R−1i Rs}, (6)

which is in fact the maximum eigenvalue (Λmax) of the
product of inverse of data correlation matrix and the de-
sired source correlation matrix. In the next section, the
formulation in (5) is extended to the sparse beamformer
design.

3. Sparse array design through SCA algorithm

The expression in (6) is applicable to any array topol-
ogy, including uniform and sparse arrays with the respec-
tive correlation matrices. To achieve sparse solutions, given
the knowledge of full correlation matrix, (5) is introduced
with an additional constraint,

minimize
w∈CN

wHRxw,

s.t. wHRsw ≥ 1,

||w||0 = P.

(7)

The operator ||.||0 denotes the l0 norm which constrains
the cardinality of the weight vector w to the number of
available sensors, P . The problem in (7) is clearly non
convex involving a hard constraint, rendering the formu-
lation challenging to solve in polynomial time [27].

The objective function and quadratic constraint in (7)
are interchanged, transforming into equivalent formulation
as follows,

maximize
w∈CN

wHRsw,

s.t. wHRxw ≤ 1.

||w||0 = P.

(8)

In general, the beamforming weight vector is complex val-
ued, however the quadratic functions are real. The real

and imaginary entries of the optimal weight vector are
typically decoupled, permitting the involvements of only
real unknowns. This is achieved through concatenating
the beamforming weight vector and defining the respec-
tive correlation matrices [28],

R̃s =

 real(Rs) −imag(Rs)

imag(Rs) real(Rs)

 , w̃ =

 real(w)

imag(w)

 (9)

R̃x =

 real(Rx) −imag(Rx)

imag(Rx) real(Rx)

 (10)

Replacing Rs and Rx by R̃s and R̃x respectively, (8) can
be expressed in terms of real variables,

maximize
w̃∈R2N

w̃
′
R̃sw̃,

s.t. w̃
′
R̃xw̃ ≤ 1.

||w||0 = P.

(11)

The quadratic constraint clearly has the convex feasibil-
ity region, however, there is still a non convex constraint
involving the l0 norm. In order to realize the convex feasi-
ble region, the l0 norm is typically relaxed to the l1 norm,
which has been effectively used in many sparse recovery
applications. The maximization problem is first trans-
formed to a minimization in order to move the l1 norm
constraint to the objective function and realize a sparse
solution. This is achieved by reversing the sign of the en-
tries of the desired source correlation matrix R̄s = −R̃s,

minimize
w̃∈R2N

w̃
′
R̄sw̃,

s.t. w̃
′
R̃xw̃ ≤ 1.

||w||0 = P.

(12)

To convexify the objective function, the concave objec-
tive is iteratively approximated through successive linear
approximation,

minimize
w̃∈R2N

mi′w̃ + bi,

s.t. w̃
′
R̃xw̃ ≤ 1.

||w||0 = P.

(13)

The approximation coefficients mi and bi, are updated it-
eratively mi+1 = 2R̄sw̃

i, bi+1 = −w̃i′R̄sw̃
i by first order

approximation. Finally, the non convex l0 norm is relaxed
through minimizing the mixed l1−∞ norm to recover sparse
solutions,

minimize
w̃∈R2N

mi′w̃ + bi + µ(

N∑
k=1

||w̃k||∞),

s.t. w̃
′
R̃xw̃ ≤ 1.

(14)
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Algorithm 1 SCA for sparse array beamforming.

Input: Received data sparse correlation matrix RP , look
direction DOA θ.

Output: P sensor beamforming weight vector
Matrix Completion:
Run Eq. (18) for free design and Toeplitz averaging for
hybrid design to estimate the full correlation matrix.
Set the lowest eigenvalues of R̂x corresponding to the
noise subspace to be equal to the noise floor.
Initialization:
Initialize the beamforming vectors randomly to find m
and b. Initialize ε, µ = 0.
while (Solution does not converge corresponding to
µ = 0) do

Run Eq. (16).
end while
Initialize hi= all ones vector, Binary vector for hybrid
design.
Select µ (Binary search)
while (Beamforming weight vector is not P sparse)
do

Run Eq. (16)) . (for initial iteration use mi and bi

from previous while loop)
Update the regularization weighting parameter,
hi+1(k) = 1

||w̃i
k||2+ε

, Update mi and bi

end while
After achieving the desired cardinality, analytically
solve for w̃ corresponding to the selected sensor lo-
cations, yielding, optimal weight vector.
return Optimal weight vector wo

The summation implements the l1 norm that is minimized
as a convex surrogate of l0 norm. The vector w̃k ∈ R2 has
two entries containing the real and imaginary parts of the
beamforming weight corresponding to the kth sensor. The
||.||∞ selects the maximum entry of w̃k and discourages the
real and imaginary entries concurrently. This is because
not selecting a sensor implies the simultaneous removal of
both the real and corresponding imaginary entries in the
final solution vector. The sparsity parameter µ is set to
zero for the first few initial iterations to allow the solution
to converge to optimal solution for the full array elements.
The sparsity parameter µ by itself does not guarantee the
final solution to be P sparse. To guarantee a P sparse
solution, the optimization problem is solved successively
against different values of µ. The values of µ are typically
given by a binary search over the possible upper and lower
limit of µ until the algorithm converges to P sensors [2].

3.1. Hybrid sparse array design

Formulation (14) penalizes all the sensor weights rather
judiciously in an effort to optimize the objective function.
We refer to this approach as free-design. On the other
hand, the hybrid sparse array design, penalizes only some
sensor weights, leaving the remaining sensors to assume

prefixed positions. These position are chosen to guarantee
full augmentatbility of the sparse array, i.e., provide the
ability to estimate the autocorrelation at all spatial lags
across the array aperture. This provide the means for
thinning the array and carrying out sparse optimization
all the times. In order to discriminate the prefixed sensors
from those which are available for design, the weighted
formulation is adopted, in turn modifying (14) as follows,

minimize
w̃∈R2N

mi′w̃ + bi + µ(

N∑
k=1

h(k)||w̃k||∞),

s.t. w̃
′
R̃xw̃ ≤ 1.

(15)

The weighting vector h is a binary vector with 1′s and
0′s entries. The entries corresponding to the prefixed sen-
sor locations are set to 0 while the remaining entries are
initialized to 1. In this way, the partial penalization is
implemented in (15) that ensures the sparsity is not en-
forced to the prefixed locations. The weighted penaliza-
tion can easily be extended to the reweighting formulation
which can further promote sparsity and facilitates the P
sparse solution [29]. This is achieved by iteratively updat-
ing weighting vector h [30, 31],

minimize
w̃∈R2N

mi′w̃ + bi + µ(

N∑
k=1

hi(k)||w̃k||∞),

s.t. w̃
′
R̃xw̃ ≤ 1.

(16)

The re-weighting vector hi, at the i-th iteration, is updated
as an inverse function of the beamforming weights at the
present iteration,

hi+1(k) =
1

||w̃i
k||2 + ε

(17)

This relatively suppresses the low magnitude weights in
the next iteration to accelerate sparsity. The parameter
ε avoids the case of division by zero. The reweighting is
applied to both the freely designed array and the hybrid
design. For the former, the vector h is initialized to all
1′s vector and updated iteratively. However, to preserve
the prefixed sensor locations for the hybrid design, the
entries of hi corresponding to the prefixed locations must
remain zero for all iterations, while the remaining entries
are initialized to 1 and updated as explained above. The
procedure is summarized in Algorithm 1.

4. Toeplitz matrix completion and Fully augmentable
completion through averaging

The key concern in the free-design sparse array formu-
lation is the assumption regarding the knowledge of the
full array correlation matrix. This is because the data from
only P active sensors is available to estimate the correla-
tion matrix. The full correlation matrix, in this case, is not
readily available and could have many missing correlation
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lags. Many different approaches for sparse matrix com-
pletion, under variant assumptions about the data model,
have been considered in the literature including high res-
olution DOA estimation. We adopt a positive semidef-
inite Toepltiz matrix completion scheme that effectively
exploits the structure of the unknown correlation matrix.
It is well known that the narrowband far field sources im-
pinging on the ULA resultantly has the hermitian positive
definite correlation matrix having the Toeplitz structure.
Along with the Toepltiz positive definite condition, the
trace heuristic is incorporated to interpolate the missing
lags. The trace heuristics is successfully used in many
areas of control systems and array processing to recover
simpler and low rank data models [32, 33, 34]. Moreover,
it has been shown that the trace heuristic is equivalent to
the nuclear norm minimization, rendering gridless recov-
ery of the underlying narrowband sources, thus recovering
the missing correlation lags [35, 36, 37, 38, 39]. The matrix
completion problem is, therefore, written as,

minimize
l∈CN

||Toeplitz(l)� Z−RP ||2F + ζTr(Toeplitz(l))

s.t. Toeplitz(l) � 0.
(18)

Here, l is a complex vector with a real first element, then
Toeplitz(l) returns the symmetric Toeplitz matrix having
l and lH defining its first row and column respectively.
Matrix RP is the received data correlation matrix with
missing correlation lags. The entries corresponding to the
missing correlation lags are set to zero. The symbol ‘�’
denotes the element wise multiplication and ‘�’ denotes
the matrix inequality enforcing the positive semidefinite
constraint. The matrix Z is a binary matrix which only
fits the non zero elements in RP to the unknown Toepltiz
matrix. The function ‘||.||2F ’ is the square of the Frobenius
norm of the matrix which seeks to minimize the sum of
error square between the observed correlation values and
the corresponding entries of the unknown Toepltiz matrix.
The symbol ‘ζ’ gives the trade off between the denois-
ing term and the trace heuristic pursuing simpler model.
The nominal value of the parameter ‘ζ’ is typically tuned
from the numerical experience for the underlying prob-
lem. However, the Toeplitz estimate can potentially be ill
conditioned having quite a few eigenvalues close to zero.
We utilize the maximum likelihood estimate of the inter-
polated Toeplitz correlation matrix by incorporating the
knowledge of the noise floor. In so doing, the eigenvalues
corresponding to the noise subspace are set equal to the
noise floor.

Unlike the free-design sparse array, where missing lags
manifest themselves as zero values at all entries of some
of the autocorrelation matrix sub-diagonals, the hybrid
design would ensure that at least one element in each ma-
trix sub-diagonal is available. This facilities the Toeplitz
estimation of the received data correlation matrix by av-
eraging the non zero correlation entries across each sub-
diagonal. The averaging scheme, however, does not guar-

antee the positive definiteness of the Toeplitz estimate [40],
[41]. This renders the formulation in (16) non convex,
which essentially requires Rx to be positive semidefinite.
In order to circumvent this issue, we return to the maxi-
mum likelihood estimate adopted for the matrix comple-
tion approach to facilitate a positive definite estimate by
eliminating the negative eigenvalues typically appearing in
the noise subspace. Finally, the estimated data correlation
matrix R̂x = Toeplitz(l) is used in lieu of Rx to carry out
the data dependent optimization for MaxSINR.

5. Simulations

We show examples under different design scenarios to
access the performance of the proposed methodology achiev-
ing MaxSINR. We establish two performance benchmarks
in order to examine the sensitivity of the proposed algo-
rithm to the initial array configuration. This is because the
matrix interpolation approach is guided on the initial con-
figuration that decides the location of the missing entries
in the data correlation matrix. The initial configuration
refers to the P -element sparse array topology at the start
before commencing of any adaptation process. In general,
the initial configuration could be any random array, or the
optimized configuration from the preceding operating con-
ditions. The first performance benchmark applies the SCA
algorithm under the assumption that the data from all the
perspective sensor locations is available. In this way, the
actual full correlation matrix utilizing T snapshots is in-
put to the SCA algorithm. Clearly, the performance of
the aforementioned benchmark is not reliant on the ini-
tial configuration but is dependent on the observed data
realization and the number of snapshots. Another deter-
ministic performance benchmark assumes perfect knowl-
edge of the full correlation matrix, representing the case
of unlimited data snapshots. To draw a proper distinc-
tion, the former would be referred as the “Full correlation
matrix-limited snapshots (FCM-LSS),” and the latter is
henceforth called the “Full correlation matrix-unlimited
snapshots (FCM-USS)”.

5.1. Example comparing both designs

Given N = 36 perspective sensor locations placed lin-
early with an inter-element spacing of λ/2. Consider se-
lecting P = 16 sensors among these locations so as to max-
imize the SINR. A single source of interest is operating at
900, i.e. array broadside. There are also six jammers, con-
currently active at locations 400, 850 950, 1350, 1400 and
1600. The SNR of the desired signal is 0 dB, whereas each
jammer has the interference to noise ratio (INR) of 20 dB.
The range of binary search for the sparsity parameter µ
is set from 0.01 to 5, γ = 10−3 (sparsity threshold) and
ε = 0.05. The initial 16-element sparse array configura-
tion to estimate the data correlation matrix is randomly
chosen, and shown in the Fig. 2a. This configuration
has missing correlation lags and is occupying a fraction
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 2: (a) Initial configuration; randomly selected 16 antennas
from 36 (b) Initial configuration leading to fully augmentable ar-
ray (c) Freely designed array (d) Hybrid designed array (e) Initial
random configuration; selected 16 antennas from 36 (f) Initial config-
uration leading to fully augmentable array (g) Freely designed array
(h) Hybrid designed array (i) Best performing array configuration (j)
Worst performing array configuration

of the available aperture. The array collects the data for
T = 1000 snapshots. The full array Toeplitz estimate is re-
covered through matrix completion with the regularization
parameter ζ = 0.5. The proposed SCA approach employ-
ing matrix completion renders an array configuration with
SINR of 11.73 dB. It is worth noting that, for the under-
lying case, the number of possible array configurations is
of order 109 which makes the problem infeasible to solve

through exhaustive search. The upper bound of perfor-
mance, however, is 12 dB which corresponds to the case
when interferences are completely canceled in the output.
In this regard, the designed array configuration is very
close to the performance upper bound. The optimized ar-
ray configuration is shown in the Fig. 2c. It is noted that
this configuration has also missing few correlation lags.

In order to access the performance of the hybrid de-
sign approach, we consider a randomly selected 16 element
fully augmentable array, which is shown in Fig. 2b. The
full data correlation matrix is estimated using the same
T = 1000 snapshots and averaging is carried over the avail-
able correlation lags to yield a Toepltiz estimate. The SCA
approach, in this case, achieves the array design shown in
Fig. 2d and has a reasonable SINR performance of 10.92
dB. The designed hybrid array is fully augmentable and
involves the prefixed sensor locations which are arranged
in the nested array topology (prefixed configuration shown
in red color). The hybrid design is clearly sub optimal as
compared to the array designed freely. It is noted that
the number of possible hybrid sparse array configurations
associated with the prefixed sensors is 53130. Although,
the possible fully augmentable configurations are signifi-
cantly less as compared to 109 possibilities, the maximum
SINR hybrid design found through enumeration is 11.93
dB and is close to the upper performance bound of 12
dB. The performance of both designs are compared with
the benchmark design initialized with FCS-LSS estimated
from T = 1000 samples supposedly collected from all N
sensors. The benchmark design yields the freely designed
and hybrid sparse configurations with the SINR of 11.82
dB and 11.65 dB respectively. This performance is su-
perior to the above mentioned designs that employ the
Toeplitz estimation in lieu of the actual full correlation
matrix.

It is of interest to analyze the effect of the initial sparse
array configuration on the proposed SCA optimization.
This time, the data is collected through the initial con-
figurations depicted in Figs. 2e and 2f, instead of the
configurations (Figs. 2a and 2b) employed for the ear-
lier example. The underlying operating environment and
all other parameters remain the same as above. As before,
the freely designed array is achieved through matrix com-
pletion, whereas the hybrid design involves averaging to
estimate the full data correlation matrix. The free-design
and the hybrid design achieve SINR of 11.82 dB and 11.65
dB, respectively. The designed array configurations are
shown in the Figs. 2g and 2h. These configurations offer
superior performances to those optimized earlier, assum-
ing different initial configurations. This underscores the
dependence of sparse array beamforming optimization on
the array initial conditions. It is noted that for the same
underlying environment and initial configuration, the pro-
posed solution is still not unique and dependent on the
random realizations of the received data. In order to re-
liably gauge the performance of the proposed scheme, we
report the average results repeated over 100 independent
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Figure 3: Average SINR performance of various sparse topologies
against desired source DOA for T = 100 snapshots.

trials. It is found that under the initial configurations
shown in Figs. 2a and 2b, the average SINR performances
are 11.79 dB for freely designed SCA and 11.18 dB for
the hybrid design. On the other hand, the initial con-
figurations, shown in Figs. 2e and 2f, yield the average
performances of 11.6 dB and 11.54 dB for the free and
hybrid designs, respectively. These performances are com-
pared with the FCS-LSS benchmark. It is found that the
FCS-LSS offers the same performance as is achieved by
SCA under initial configurations adopted in Figs. 2e and
2f. We remark that under the initial array configurations
shown in Figs. 2a and 2b, the SCA-based matrix com-
pletion even surpasses the FCS-LSS benchmark, however,
it offers slightly lower SINR for the hybrid design (11.18
dB as compared to 11.54 dB). The optimum hybrid array
configuration found through enumeration is shown in Fig.
2i with an SINR of 11.9 dB, whereas the worst case hybrid
configuration (shown in Fig. 2j) has an associated SINR of
7.5 dB which is considerably lower than the above designs.

5.2. Monte Carlo design for random scenarios

The above examples tie the performance of the pro-
posed algorithm not only to the location of the sources
and their respective powers but also show the dependence
on the initial array configuration, the number of snapshots
and the observed realization of the received data. In or-
der to provide a more meaningful assessment, the simu-
lation scenarios are designed keeping the aforementioned
variables in perspective. We generate 11 different scenar-
ios. For each scenario, the desired source DOA is kept
fixed, whereas six jammers are randomly placed anywhere
from 300 to 1500 with the respective powers uniformly dis-
tributed from 5 to 15 dB. The experiments are repeated
3000 times and the initial array configuration is randomly
chosen for each experiment. For the freely designed ar-
ray, the initial array configuration is selected by randomly
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Figure 4: Average SINR performance of various sparse topologies
against desired source DOA for T = 250 snapshots.

choosing 16 sensors from 36 sensors. However, the ini-
tial configuration for the hybrid design is randomly chosen
from all the possible 16 sensor fully augmentable array con-
figurations associated with the prefixed sensors arranged
in nested configuration as depicted in Fig. 2b (red color
sensors).

Figure 3 shows the results for T = 100. The per-
formance curve of the SCA algorithm for the freely de-
signed array incorporating matrix completion lies in be-
tween (for most points) the benchmark designs incorpo-
rating FCM-USS and FCM-LSS. That is the matrix com-
pletion approach even outperforms the benchmark design
incorporating the FCM-LSS. This performance is explain-
able because matrix completion coupled with the apriori
knowledge of noise floor renders a more accurate estimate
of the full correlation matrix as compared to FCM-LSS,
without incorporating knowledge of noise floor, which has
high noise variance because of limited snapshots. The per-
formance of the other benchmark incorporating the exact
knowledge of the correlation matrix (FCM-USS) is clearly
superior over matrix completion. The results are fairly
similar for the hybrid design, where the performance curve
utilizing the Toeplitz averaging is sandwiched between the
benchmark designs incorporating the exact correlation ma-
trix (FCM-USS) and the one utilizing the presumably ob-
served full data correlation matrix (FCM-LSS). The hy-
brid designed and freely designed arrays, both demonstrate
desirable performances. However, the matrix completion
marginally outperforms the hybrid design with an average
performance gain of 0.2 dB.

The performance curves are re-evaluated by increasing
the snapshots to T = 250 and T = 1000, as shown in
Figs. 4 and 5. With such increase, the performances of
the proposed SCA using Toeplitz completion move closer
to the performances of the FCM-USS benchmark. It is also
noted that in contrast to lower snapshots (T = 100), the
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Figure 5: Average SINR performance of various sparse topologies
against desired source DOA for T = 1000 snapshots.
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Figure 6: Sensor switching comparison vs the free-design and the
hybrid design.

FCM-LSS benchmark for higher samples (T = 1000) offers
superior average performance over SCA designs incorpo-
rating Toeplitz completion. It is of interest to track the
average antenna switching involved per trial for both the
free-design and the hybrid design. Fig. 6 shows that freely
designed array involves 9 antenna switching per trial which
is more than twice that of the hybrid design (4 antenna
switching per trial). It is also noted that for the hybrid
design, the maximum antenna switching is constrained to
5 antennas as the rest of 11 sensors are prefixed. In this
regard, the hybrid design has more efficient switching as
it utilizes 80 percent (4/5) of the DOF as compared to
the mere 55 percent (9/16) switching efficiency of freely
designed arrays.

6. Conclusion

Sparse array design for maximizing the beamformer
output SINR is considered for a single source in an in-
terference active environment. The paper addressed the

problem that the optimization of the array configuration
requires full data correlation matrix which is not readily
available in practice. Two different design approaches were
considered; one assumes prefixed position of subset of sen-
sors so as to provide full array augmentation, referred to
as the hybrid-design approach, whereas the other, which is
referred to as free-design approach, has no such restriction,
and freely allocates all degrees of freedom to maximize the
objective function. It was shown that the Toeplitz esti-
mation of the autocorrelation at the missing spatial lags
has a desirable performance. The SCA was proposed for
both the freely designed and hybrid designed arrays to
achieve MaxSINR in polynomial run times with a reason-
able trade off in SINR. It was shown that, in contrast
to hybrid design, the matrix completion scheme does not
require to pre-allocate sensor resources and, therefore, of-
fers more design flexibility and better SINR performance.
This performance improvement is, however, at the cost of
increased computational complexity and finer parameter
tuning as required to accomplish Toepltiz matrix comple-
tion. The simulation examples provided showed that the
performance of the proposed SCA algorithm incorporat-
ing Toeplitz completion is agreeable with the established
benchmark designs.
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